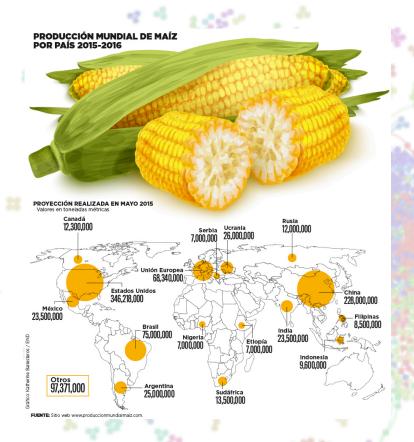


Estructura y dinámica de la relación entre actores involucrados en la generación, producción y difusión de variedades de maíz en Colombia


Oscar Yandy Romero G.

Grupo de investigación: Sociofísica y Econofísica del departamento de Física de la Universidad Nacional de Colombia

Contenido

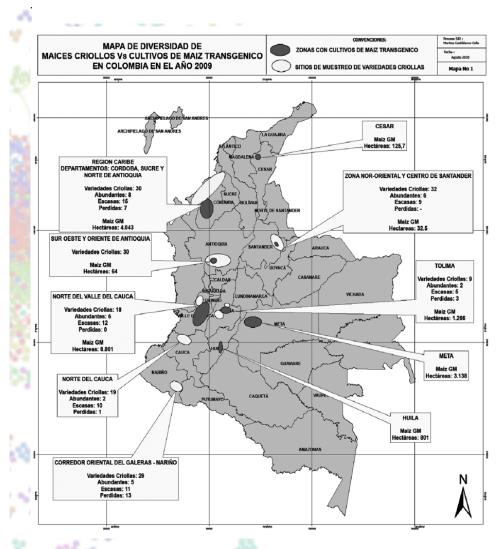
- Planteamiento del problema
- Marco teórico
- Resultados
- Conclusiones

Planteamiento del Problema (1)

- Es la tercera cosecha en importancia en el mundo después del trigo y el arroz.
- Se cultivan variedades tradicionales, hibridas y transgénicas (OVM).
- Se cultiva principalmente de forma tradicional o tecnificado

Planteamiento del Problema (2)

En Colombia:

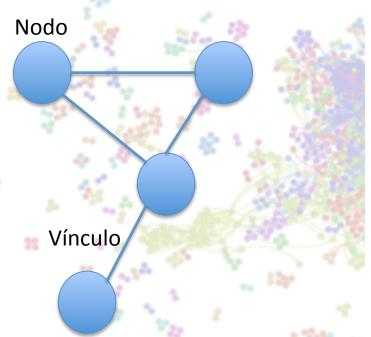

 ICA, 1957: 23 razas: 2 primitivas + 9 introducidas + 12 híbridas (remotas y recientes).

 Colombia en el año 2000 firma el Protocolo de Cartagena reglamentando el uso de variedades transgénicas. En el 2005 el INVIMA da licencias para su comercialización y consumo y en el 2007 el ICA para su producción

 "Programa Nacional de Investigación, Desarrollo y Fomento del Cultivo del Maiz Tecnificado en Colombia (2005-2020)": FENALCE, ICA, CIMMYT, Corpoica, Acosemillas y Monsanto, Syngenta y Dupont-Pioneer.

Planteamiento del Problema (4)

- La generación de conocimiento y su difusión dependen en general de las políticas, las formas de mercadeo, las prácticas de los agricultores y las preferencias de los consumidores.
- En el caso de variedades de maíz pueden ser de origen ancestral o producto de desarrollos biotecnológicos (híbridos, OVM).
- Los modelos tradicionales de cultivo del maíz están en contacto con los modelos modernos.



Planteamiento del Problema (5)

 Este estudio tiene en cuenta las conexiones que tienen los actores con el medio local, nacional e internacional a partir de sus relaciones especificas con la generación, producción e innovación de variedades de maíz.

MARCO TEÓRICO

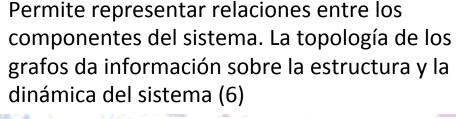
Noción de red

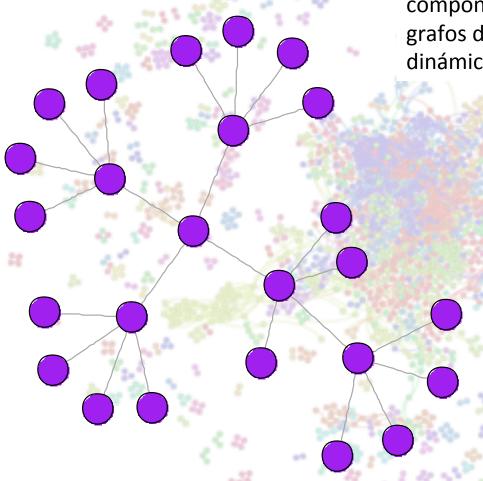
- La red vincula elementos del sistema según las relaciones entre ellos.
- Los grafos representan las redes: los elementos son los nodos y los patrones de relación son los vínculos.
- Las propiedades del sistema o de sus elementos están asociadas a la topología de los grafos.

Nociones de actor y de relación

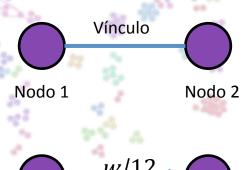
- El actor, que puede ser un individuo o una organización, está definido por sus propósitos que traduce a través de la interacción social
- Una relación (ej. Institución del matrimonio) conecta actores del sistema a través de vínculos entre ellos (ej. Ana-Jaime) que representan interacciones o flujos específicos
- Las relaciones pueden ser de parentesco, afectivas, de intercambio (materiales o simbólicos), de asociación, uso de recursos comunes, adyacencia o cognitivos
- El actor es una unidad relacional que tiene una posición y un rol dentro de la red según sus relaciones y los patrones de vínculos con otros actores del sistema

ANÁLISIS DE REDES SOCIALES - ARS

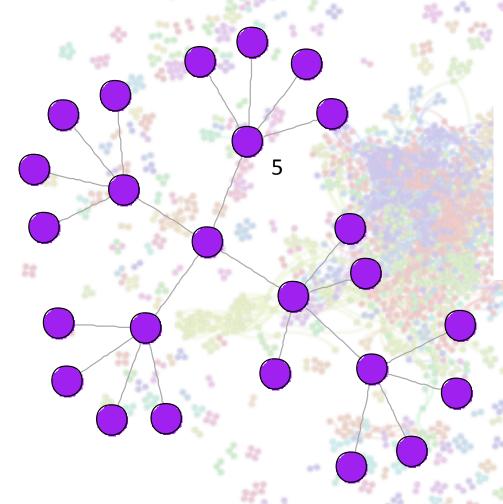

La Red social es el espacio estructural de la acción.


Establece que el **poder** de un actor social depende de su posición (centralidad) y su papel (rol) en la sociedad.

Según el ARS, la posición y el papel del actor social resultan de la manera como resuelve sus **propósitos** a través de la interacción social (5).

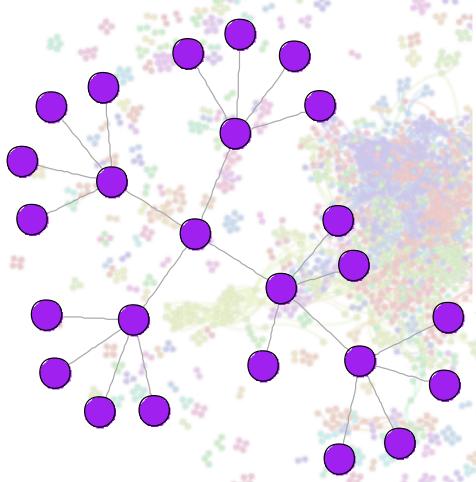

TEORÍA DE GRAFOS (1)

Definiciones



$$g(N,L,W)$$
 $N=\{n \downarrow 1, n \downarrow 2, n \downarrow 3, ... n \downarrow n\}$
 $L=\{\ell \downarrow 12, \ell \downarrow 13, ..., \ell \downarrow ij, ...\}$
 $W=\{w \downarrow 12, w \downarrow 13, ..., w \downarrow ij, ...\}$

TEORÍA DE GRAFOS (2)

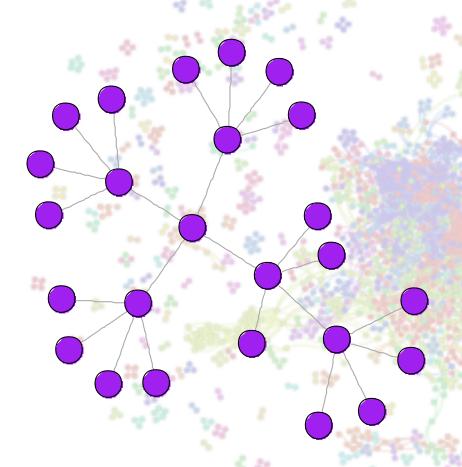

CENTRALIDAD GRADO

Es la cantidad de nodos adyacentes a un nodo.

Da cuenta del nivel de visibilidad, importancia o potencial de actividad de un nodo (5).

$$k \downarrow i = \sum_{j=1}^{j=1} n = \ell \downarrow ij$$

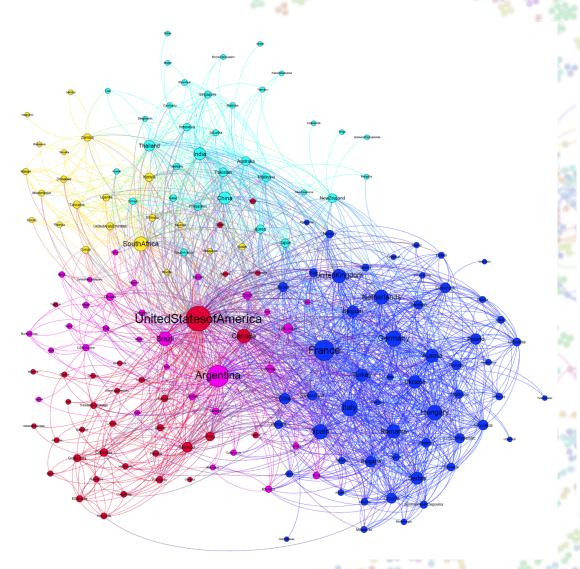
TEORÍA DE GRAFOS (3)


CENTRALIDAD DE INTERMEDIACIÓN

Número geodésicas (caminos más cortos entre pares de nodos) que pasan por el nodo.

Refleja la importancia del nodo de acuerdo a los flujos de información a través de él. (6)

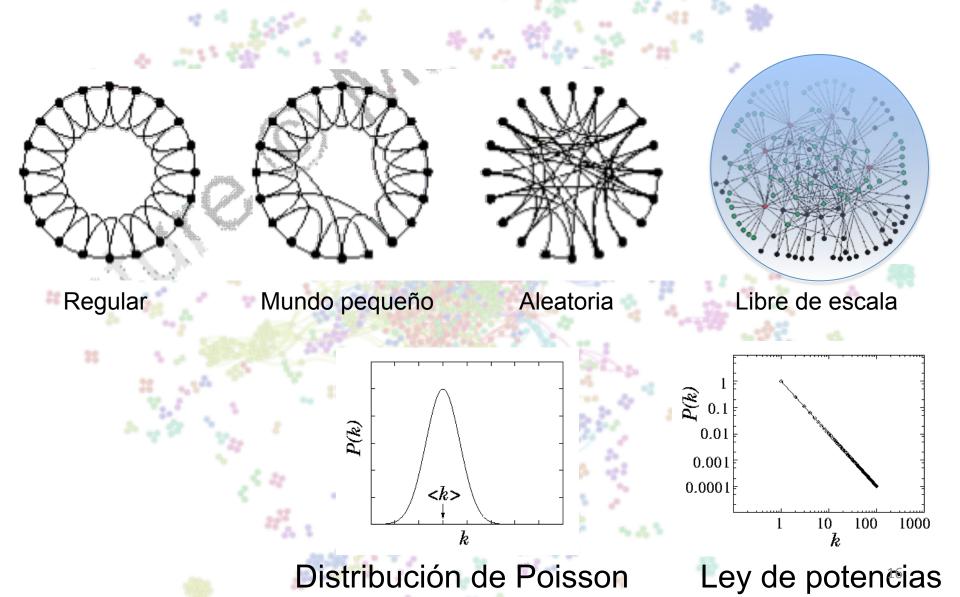
$$B_{v} = \sum_{i,j:i\neq j,i\neq v,j\neq v} \frac{g_{ivj}}{g_{ij}}$$


TEORÍA DE GRAFOS (4)

Centralidad de Autovector

Da la participación de un nodo en la tendencia de la Red (7).

4. REDES COMPLEJAS (1)



Las propiedades emergentes del sistema como un todo no son la suma de aquellas de las partes (ej. temperatura, entropía, fenómenos colectivos) (14).

Se preocupa por cómo las reglas formativas dan lugar a propiedades del colectivo.

Naturaleza estadística.

4. REDES COMPLEJAS (2)

FUENTES DE INFORMACIÓN

Búsqueda bibliometría

Fuente: Web of Science (disponible desde 2001 hasta 2015).

Datos: Artículos publicados sobre cuatro tipos de variedades transgénicas: RR, bt, Herculex, YieldGard. Autoría, instituciones de investigación, financiadores, palabras claves y países involucrados.

La fórmula de búsqueda usada.

TS=((Maiz*) OR (corn*)) AND (TS=(RR) OR TS=(bt) OR TS=(Herculex) OR TS=(YieldGard))

Número de artículos: 1967

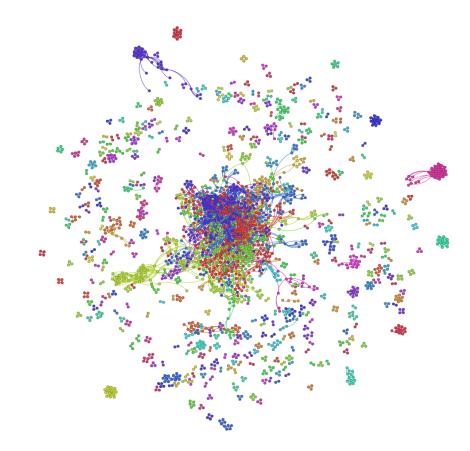
Comercio internacional de maíz

Fuente: Organización para los alimentos y la agricultura de la Naciones Unidas (FAO).

Datos: Exportación e importación entre los países (2010).

Departamento del Meta

Fuente: ICA

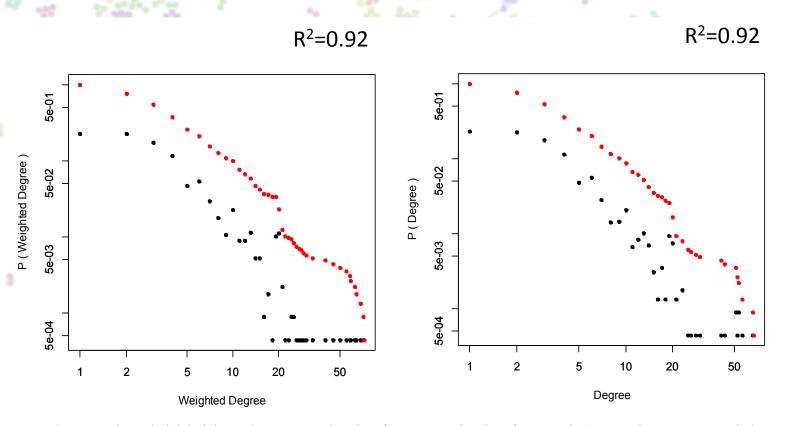

Datos: agricultores que sembraron maíz transgénico en el Departamento del Meta durante el primer Semestre de 2014.

Municipio, vereda, variedad y área sembrada

RESULTADOS: ANÁLISIS GLOBAL

Institución-Artículo-Institución

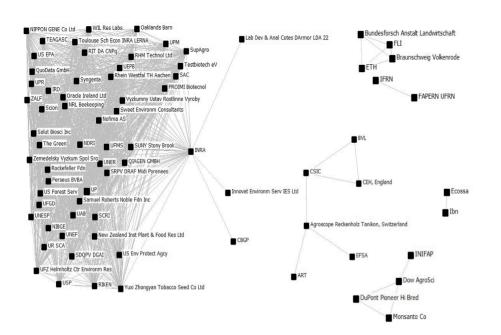
Se encontró un total de 992 instituciones involucradas en la investigación, las cuales están segmentadas en diferentes módulos.



Red de instituciones vinculadas en la elaboración de variedades transgénicas que colaboran en un mismo artículo. Elaboración propia

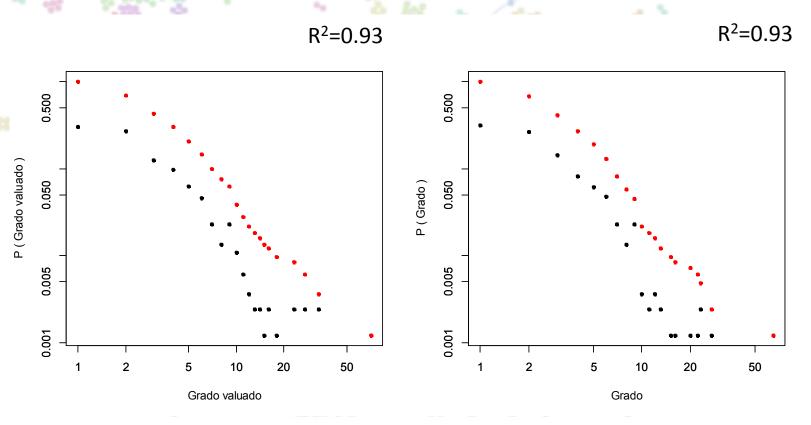
Instituciones con mayores valores de Centralidad.

Institución	Pais	Grado	Autovector	Intermediación
Iowa State University	USA	176	0.696	3197
USDA aphis biotechnology regulatory services (BRS)	USA	167	0.512	3222
DuPont Pioneer Hi Bred	USA	132	0.131	4947
Monsanto Company	USA	125	0.16	3741
Agroscope Reckenholz Tanicon	Suiza	113	0.157	4120
Cornell University	USA	110	0.201	1741
Chinese Acad Agr Scince	China	108	0.083	4393
Univ Minnesota	USA	105	0.157	5092
United States Department of Agriculture Agricultural Research Service	USA	96	0.122	2636
Univ Nebraska	USA	94	0.161	1856
Louisiana State University	USA	91	0.128	0.745
Syngenta	USA	84	0.091	1156
INRA	Francia	74	0.013	4009
Carolina State University	USA	70	0.058	1352
Zhejiang University	China	68	0.086	1450
Szent Istvan University	Hun	66	0.006	1475
Univ Illinois	USA	65	0.093	0.843
Nanjing Agr Univ	Hungria	62	0.023	2998
Dow AgroScince	USA	59	0.062	0.901
Center for Biotechnology University of Nebraska–Lincoln	USA	59	0.006	4041

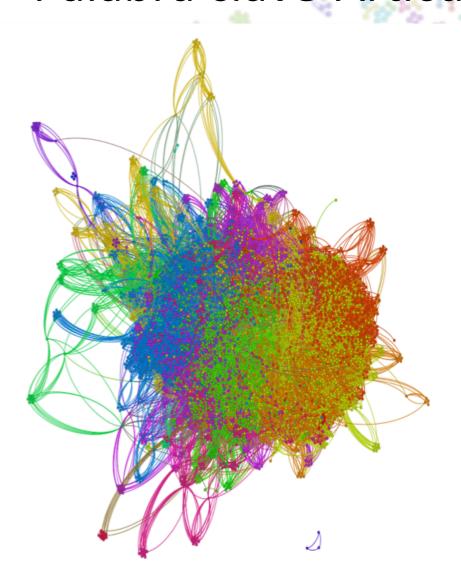

Distribución de probabilidad de grado para las instituciones

Distribuciones de probabilidad de grado. En negro distribución y en rojo distribución acumulativa complementaria. Escala *log-log* para los ejes de todas las gráficas. Elaboración propia

Financiador-Artículo-Financiador


Se encontraron 543 financiadores (empresas, organizaciones o instituciones estales) que han apoyado las investigaciones en la generación de las variedades transgénicas del maíz.

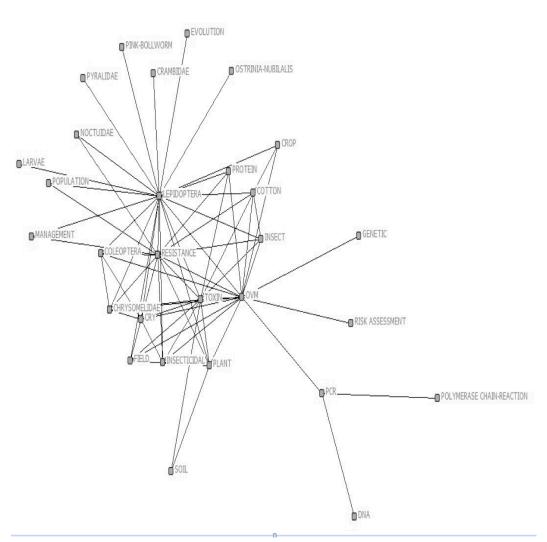
Empresas con un autor en común. Elaboración propia


P. Talan				
Financiador	Pais	Grado	Autov	Interme
			ector	diación
National Natural Science Foundation of China	China	131	0.132	8301
United States Department of Agriculture	USA	112	0.943	13464
National Basic Research Program (973 Program) of China	China	82	0.072	2978
Monsanto Company	USA	65	0.214	3453
DuPont Pioneer	USA	46	0.056	2507
European Union	Europ a	43	0.001	3415
Syngenta company	USA	42	0.053	1210
National High Technology Research and Development (863) Program,	China	40	0.021	1011
Ministry of Science and Technology of China	China	31	0.018	0.105
National Science Foundation, USA	USA	31	0.048	4018
Louisiana Soybean and Feed Grain Promotion Board	USA	29	0.108	0.172
Dow AgroSciences LLC	USA	28	0.031	0.930
Spanish Ministerio de Ciencia e Innovacion	Españ a	28	0.009	1208
United States Agency for International Development, USAID	USA	27	0.059	2701
National Council for Scientific and Technological Development (CNPq)	Brasil	24	0.000	1959
Special Fund for Agri-scientific Research in the Public Interest of China	China	24	0.008	0.083
CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) Ministry of Education	Brasil	23	0.010	4431
Ministry of Agriculture of China	China	22	0.010	0.526
Spanish Ministry of Environment (MMA)	Españ	21	0.004	2386

Distribución de probabilidad de grado para los financiadores

Distribuciones de probabilidad de grado. En negro distribución y en rojo distribución acumulativa complementaria. Escala *log-log* para los ejes de todas las gráficas. Elaboración propia

Palabra clave-Artículo-Palabra clave



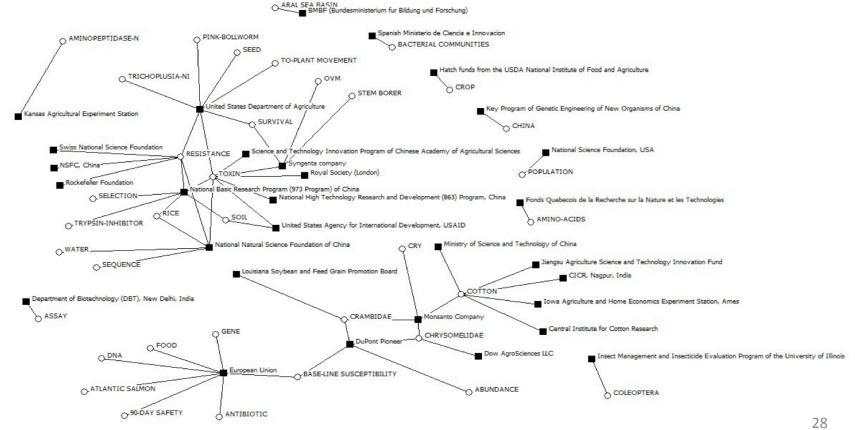
Red de palabras clave vinculados por estar en un mismo artículo. Los colores representan los módulos dentro de la red. Elaboración propia.

Medidas de centralidad de las principales palabras claves utilizadas en los artículos

Palabras clave	Grado	Autovector	Intermediación
LEPIDOPTERA	4,061	0.584	12,575
OVM (Organimos Vivo	2,777	0.293	7,234
Modificado)			
TOXIN	2,708	0.317	7,738
RESISTANCE	2,661	0.367	6,316
PLANT	1,793	0.151	7,619
CRY	1,593	0.184	2,170
INSECT	1,518	0.195	2,217
INSECTICIDAL	1,512	0.163	2,684
COTTON	1,495	0.176	3,178
PROTEIN	1,357	0.125	4,377
FIELD	1,342	0.138	2,639
CROP	1,282	0.107	3,241
COLEOPTERA	1,272	0.124	1,769
GENETIC	1,068	0.065	3,533
CHRYSOMELIDAE	1,032	0.107	0.798
SOIL	1,007	0.065	3,286
POPULATION	984	0.094	2,714
GENE	883	0.063	3,790
MANAGEMENT	877	0.088	1,505
DNA	798	0.033	2,761
NOCTUIDAE	764	0.117	0.499
RISK ASSESSMENT	743	0.065	1,657 26
LARVAE	667	0.077	1,012

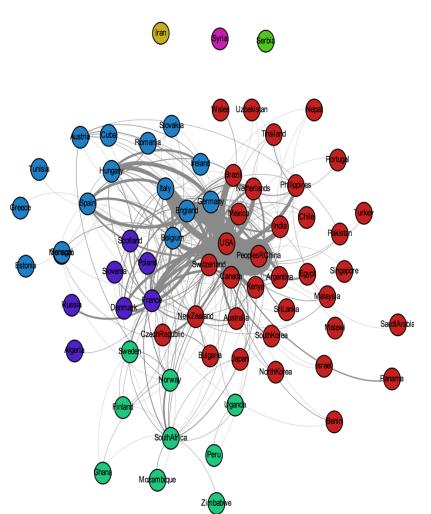
Palabra clave-Artículo-Palabra clave

Red de palabras clave con mayor número de vínculos. Dos palabras se encuentran vinculadas por encontrarse en un mismo artículo. Elaboración propia.


Medidas de centralidad de las principales palabras claves utilizadas en los artículos

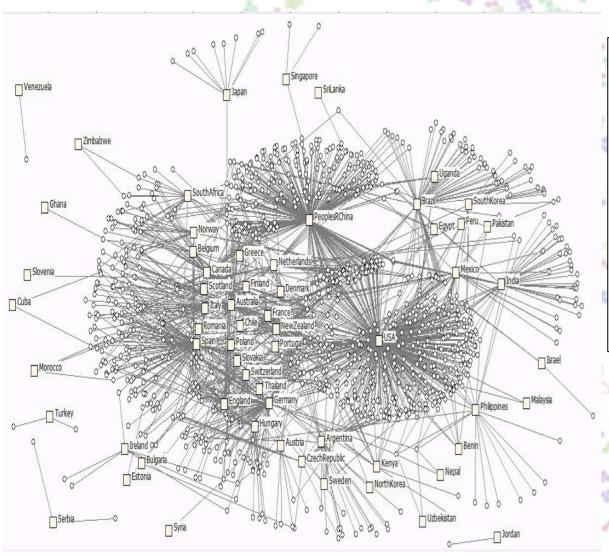
utilizadas eti ios ai ticulos				
Palabras clave	Grado	Autovector	Intermediación	
LEPIDOPTERA	4,061	0.584	12,575	
OVM (Organimos Vivo	2,777	0.293	7,234	
Modificado)				
TOXIN	2,708	0.317	7,738	
RESISTANCE	2,661	0.367	6,316	
PLANT	1,793	0.151	7,619	
CRY	1,593	0.184	2,170	
INSECT	1,518	0.195	2,217	
INSECTICIDAL	1,512	0.163	2,684	
COTTON	1,495	0.176	3,178	
PROTEIN	1,357	0.125	4,377	
FIELD	1,342	0.138	2,639	
CROP	1,282	0.107	3,241	
COLEOPTERA	1,272	0.124	1,769	
GENETIC	1,068	0.065	3,533	
CHRYSOMELIDAE	1,032	0.107	0.798	
SOIL	1,007	0.065	3,286	
POPULATION	984	0.094	2,714	
GENE	883	0.063	3,790	
MANAGEMENT	877	0.088	1,505	
DNA	798	0.033	2,761	
NOCTUIDAE	764	0.117	0.499	
RISK ASSESSMENT	743	0.065	1,657 27	
LARVAE	667	0.077	1,012	

Palabra clave-Financiador


Componente 1: (Monsanto, Dupont-Pioneer, y Dow agroscience) y junto a ellas la estación experimental en Iowa. Interesado en biología molecular, casos como el del algodón y el salmon y algunos grupos de herbívoros de las plantas

Componente 2: Entidades estatales, programas agrícolas de la China y Estados Unidos y Syngenta. Interesados en toxinas que presentan resistencia a diferentes grupos de artrópodos

País-Artículo-País

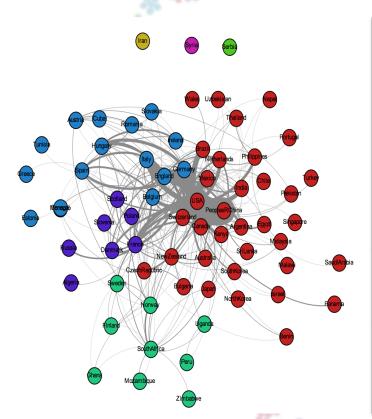

Países con valores más altos de centralidad.

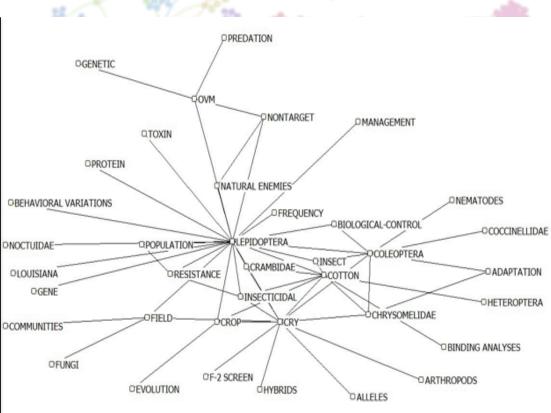
Alianzas entre países para investigar sobre variedades transgénicas. El grosor de las líneas indica la cantidad de artículos compartidos y el color el módulo al que pertenecen. Elaboración propia

País	Centralidad de grado	Centralidad de auto vector	Centralidad de intermediación
USA	12.101	0.63	28.944
China	3.942	0.409	7.868
England	4.116	0.31	3.817
Germany	4.797	0.29	10.605
Switzerland	3.13	0.274	3.314
Canada	2.377	0.253	5.155
Italy	2.522	0.165	2.176
Mexico	1.174	0.139	1.631
France	2.435	0.135	12.598
Brazil	1.087	0.095	3.466
Netherlands	1.13	0.094	1.864
Belgium	1.101	0.079	0.823
India	0.725	0.074	1.499
Spain	1.13	0.063	11.389
Hungary	1.304	0.057	2.092
Denmark	0.812	0.047	0.681
Kenya	0.449	0.047	2.827
Philippines	0.493	0.045	0.759
Argentina	0.449	0.043	0.08
Australia	0.551	0.042	0.437
NewZealand	0.551	0.035	0.594

País-Finaciador

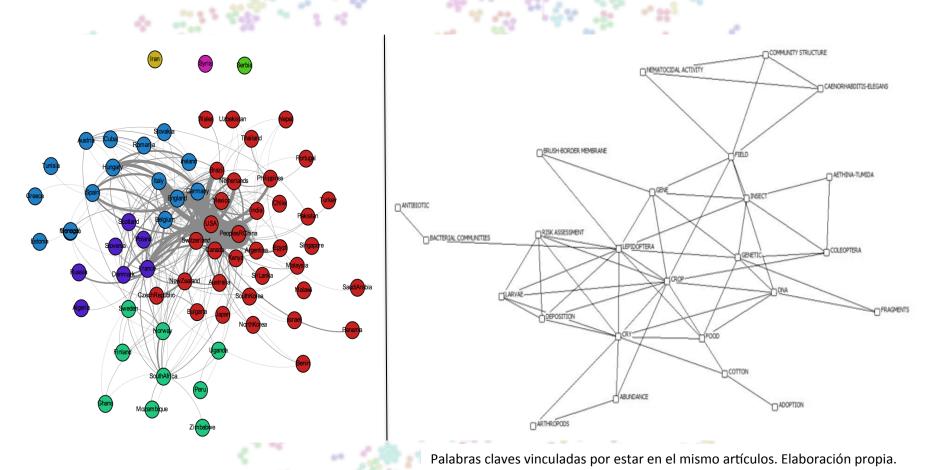
Red entre países y empresas que han financian los artículos científicos producidos en estos países. Los cuadrados representan los países y los círculos sus financiadores. Elaboración propia.

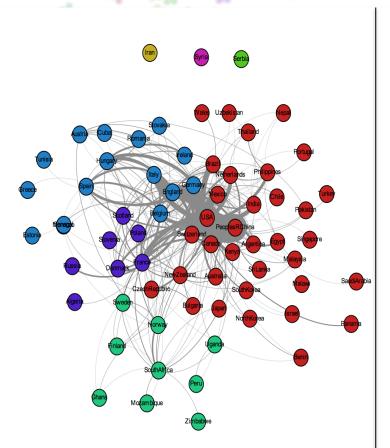

20 países con valores más altos valores de centralidad. Red Financiadores países

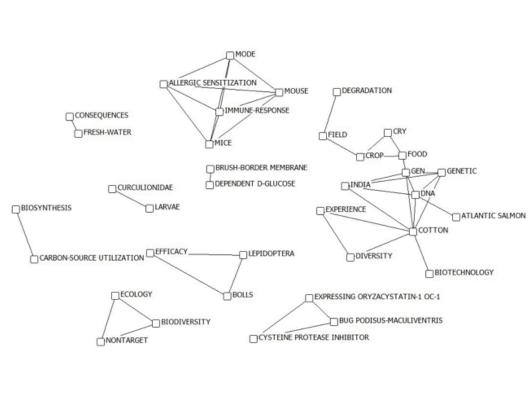

	Centralidad	Centralidad	centralidad de
	de grado	de autovector	intermediación
	ue grauo	de autovector	intermediacion
USA	0.419	0.908	0.595
Peoples R. China	0.268	0.38	0.349
Germany	0.081	0.084	0.087
Australia	0.045	0.055	0.031
Switzerland	0.045	0.051	0.038
France	0.036	0.05	0.024
Canada	0.047	0.044	0.04
Netherlands	0.032	0.044	0.021
Brazil	0.059	0.041	0.065
Spain	0.093	0.041	0.123
Mexico	0.029	0.04	0.021
England	0.035	0.036	0.025

Las publicaciones de China y Estados Unidos son apoyadas por sus empresas e instituciones a partir de estas se empiezan a vincular los diferentes países que colaboran con estos países.

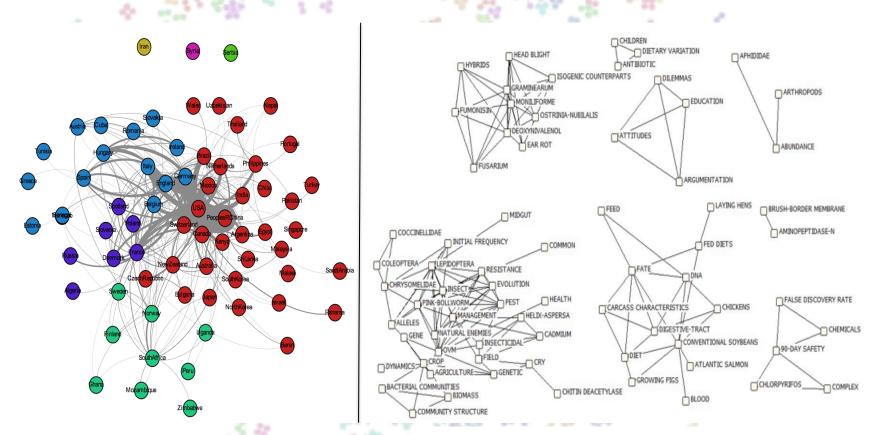
Esto muestra como los actores económicos interesados en diferentes desarrollos van permeando las relaciones y las investigaciones.


Palabras clave en los módulos (1) Módulo rojo

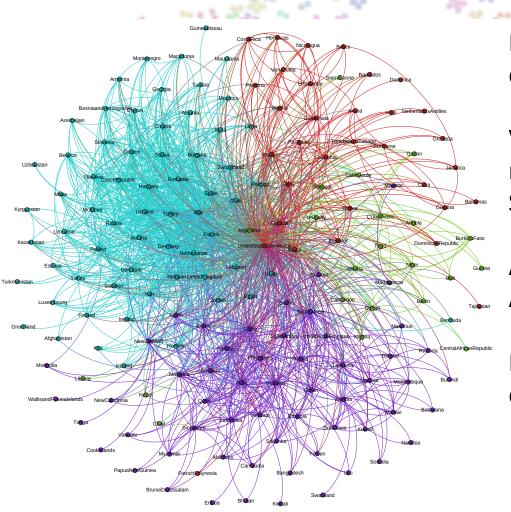



Palabras claves vinculadas por estar en el mismo artículo. Elaboración propia.

Palabras clave en los módulos (2) Módulo azul


Palabras clave en los módulos (3) Módulo verde

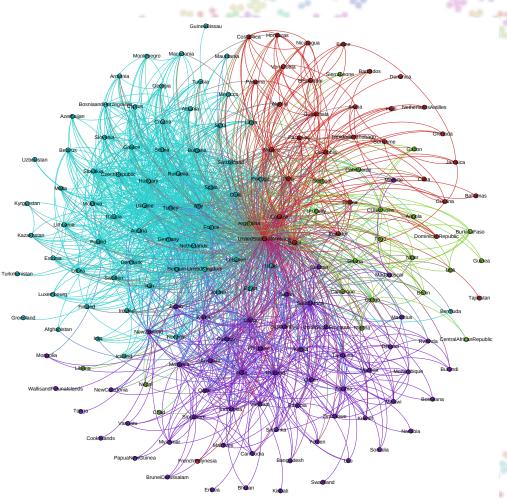
Palabras claves vinculadas por estar en el mismo artículo. Elaboración propia.


Palabras claves en los módulos (4) Módulo morado

Palabras clave vinculadas por estar en el mismo artículo. Elaboración propia.

RESULTADOS: COMERCIO INTERNACIONAL

Red global de comercio del maíz (1) Clusters de países

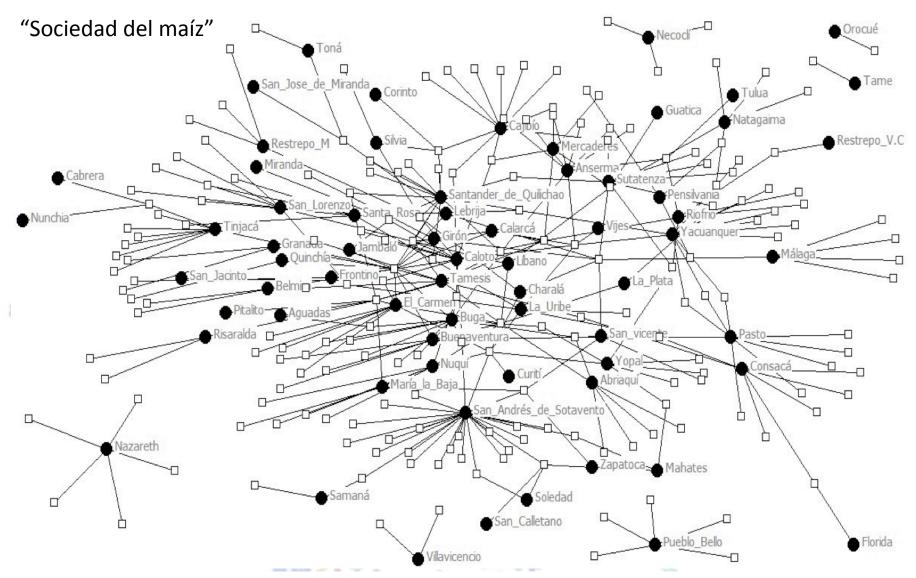

Rojo: Continente americano a excepción de Argentina, Brasil y Cuba.

Verde: Brasil, Uruguay, Argentina, la región noroccidental de África, Egipto Siria, Jordania, Yemen, entre otros.

Azul: Alemania, Rusia, el centro y sur de África, los Emiratos Árabes Unidos

Morado: el sudeste asiático, el oriente de Asia y Oceanía.

Red global de comercio del maíz(2) Grado


Los países con más interacciones (grado) presentan son Estados Unidos, Argentina, Francia, China, Alemania, Italia, Hungría, Países Bajos, España, Romania, Sudáfrica, Brasil, Austria, Reino Unido y Ucrania: los cuales acumulan cerca del **37%** de todas las operaciones comerciales bilaterales de maíz en el mundo.

Dicha condición de acumulación se relaciona con la tendencia en distribución en ley de potencias, que muestra la distribución de grado de las transacciones comerciales de maíz (R²=0.814)

Comercio internacional del Maíz. Cada coloración de líneas representa un grupo comercial diferente en el mercado. El sistema se representa en forma de grafo

Variedad-Municipio (1)

Grafo de la red de municipios y variedades de maíz estudiadas por Vélez y García (2011). Los círculos negros corresponden a los municipios. Los cuadrados blancos corresponden a las variedades. Elaboración propia.

Variedad-Municipio (2)

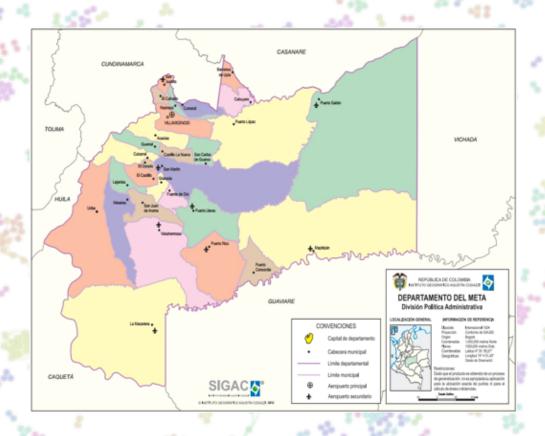
Medidas de centralidad para las 20 variedades más difundidas en el territorio Colombiano.

Variedad	Centralidad de grado	Centralidad de Autovector	Centralidad de Intermediación
Amarillo	0.224	0.533	0.237
Caturro	0.09	0.272	0.049
Negro	0.06	0.23	0.095
Capio	0.104	0.201	0.057
Capio blanco	0.06	0.192	0.041
Diente caballo blanco	0.075	0.19	0.045
Blanco	0.104	0.176	0.117
Amarillo tempranero	0.06	0.174	0.01
Rojo nativo	0.075	0.174	0.046
Amarillo criollo	0.119	0.168	0.068
Diente caballo amarillo	0.09	0.164	0.084
Capio amarillo	0.045	0.147	0.013
Blanco criollo	0.045	0.126	0.01
Morado	0.075	0.118	0.059
Indio	0.045	0.103	0.014
Amarillo rojo	0.045	0.101	0.028
Coruntillo rojo	0.045	0.101	0.022
De ajo	0.06	0.095	0.023
Coruntillo	0.03	0.089	0.015

Las variedades que se encuentran en el mayor número de municipios tienen coloración en sus granos amarillo y blanco, que son las más comercializadas.

Sin embargo, variedades de color rojo y morado que son usadas ritualmente en la elaboración de chicha y alimentos también presentan valores altos de centralidad, esto muestra que este tipo de prácticas se mantienen en el territorio y se han difundido.

Variedad- Municipio (3)


Medidas de centralidad para las variedades de maíz utilizadas en Colombia. Elaboración propia a partir de datos de Vélez y García (2011).

(2011).						
Municipio	Departamento	Centralidad de grado	Centralidad de Autovector	Centralidad de Intermediación		
Caloto	Cauca	0.068	0.422	0.152		
Santander de Quilichao	Cauca	0.078	0.387	0.118		
San Andrés de Sotavento	Córdoba	0.135	0.358	0.187		
Támesis	Antioquia	0.047	0.31	0.092		
Buga	Valle del Cauca	0.063	0.287	0.089		
El Carmen	Antioquia	0.052	0.258	0.08		
Buenaventura	Valle del Cauca	0.036	0.215	0.051		
Calarcá	Quindío	0.021	0.208	0.02		
ambaló	Cauca	0.01	0.127	0.001		
_ebrija	Santander	0.021	0.124	0.029		
Tinjacá	Boyacá	0.042	0.124	0.061		
Girón	Santander	0.016	0.113	0.017		
₋íbano	Tolima	0.016	0.113	0.038		
Nuquí	Choco	0.036	0.108	0.034		
Belmira	Antioquia	0.016	0.102	0.014		
Granada	Meta	0.016	0.102	0.014		
rontino	Antioquia	0.01	0.099	0.007		
Quinchía	Risaralda	0.01	0.099	0.007		
Santa Rosa	Risaralda	0.042	0.094	0.036		
_a Uribe	Meta	0.031	0.091	0.061		

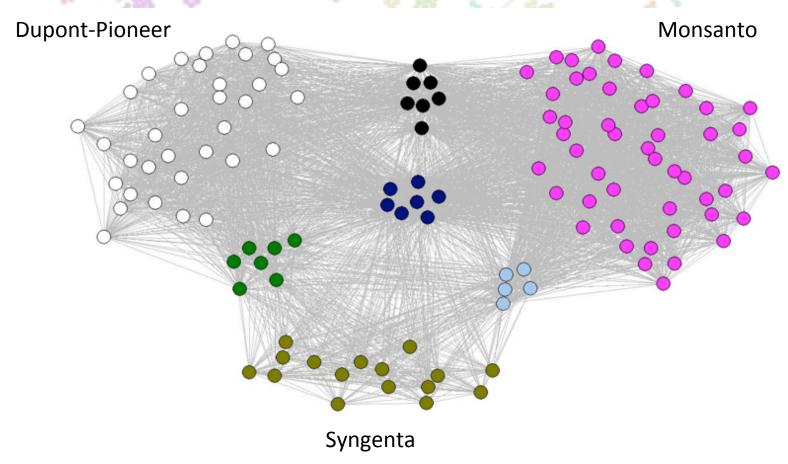
Los municipios con valores altos centralidad se encuentran principalmente en el Cauca, es decir que allí se usan variedades que son ampliamente difundidas en el territorio Colombiano. Granada y la Uribe en el Meta tienen una amplia conexión con otros municipios, esto se debe a que estos municipios fueron centros de migración de diferentes campesinos que provenían del territorio colombiano en la violencia desatada después del a muerte de Gaitán (Molano, 2000).

RESULTADOS: DEPARTAMENTO DEL META

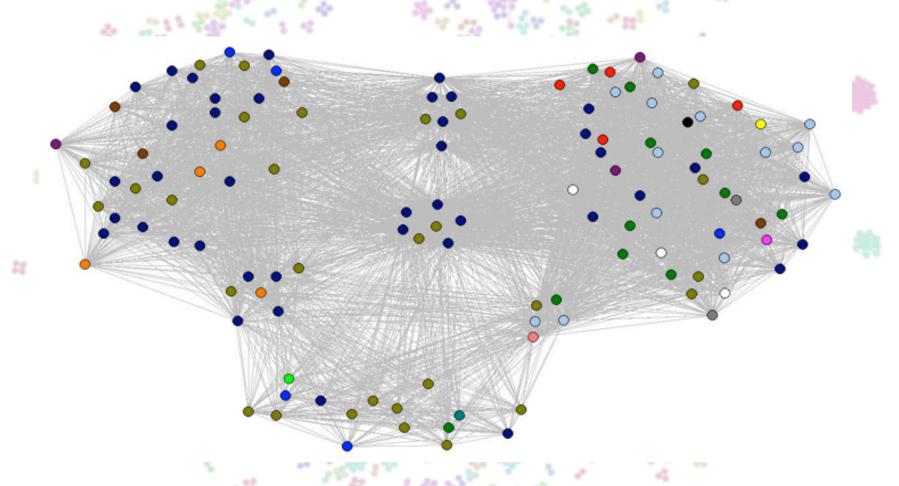
Departamento del Meta

El Departamento del Meta representa el 7.5% del territorio nacional y en él se pueden diferenciar tres agroregiones: el Piedemonte Llanero, la Altillanura y la Vega del Río Ariari.

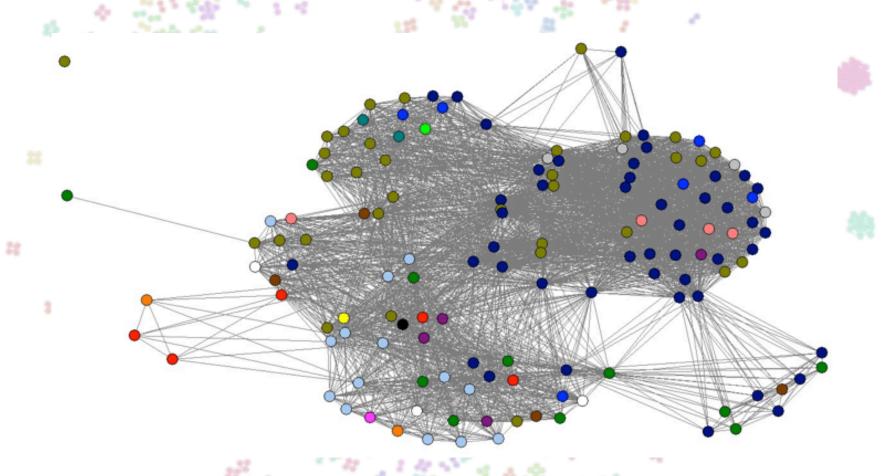
Municipio-Agricultor-Municipio

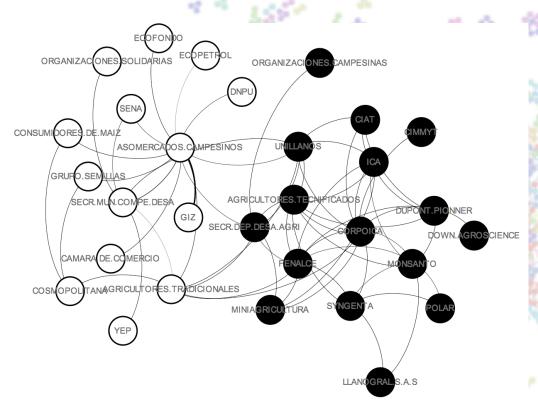


Grafo de los municipios vinculados por tener agricultores en común. Elaboración propia.


Número de hectáreas que sembraron Dupont-Pioneer, Monsanto y Syngenta en cada municipio en el 2014.

	MONSANTO	PIONNER	SYNGENTA	Total general
ACACIAS	2			2
CABUYARO	2120			2120
CASTILLA LA NUEVA	1620			1620
CUMARAL	837			837
EL CASTILLO	6345		2100	8445
FUENTE DE ORO	4679	581.4	33550	38810.4
GRANADA	11828	1447	18690	31965
LEJANIAS	411	44		455
MESETAS			3300	3300
PUERTO GAITAN	1651			1651
PUERTO LLERAS		168.1	3500	3668.1
PUERTO LOPEZ	15925			15925
PUERTO RICO			300	300
SAN CARLOS DE GUAROA	958			958
SAN JUAN DE ARAMA	1395	45.5	3800	5240.5
SAN MARTIN	10035	21.4		10056.4
VILLAVICENCIO	18005		4800	22805
VISTA HERMOSA	3942		2400	6342
Total general	79753	2307.4	72440	154500.4


Vereda-Empresa-Vereda (1)


Veredas-Empresa-Vereda (2)

Veredas-Variedad OVM-Vereda

Red de actores que participan en la producción y difusión de variedades de maíz

Grafo de la red de actores, los vínculos se establecen a partir de las relaciones que se evidenciaron en las entrevistas. Elaboración propia

Densidad (0,147)

Centralización de grado (0,286)

Centralización intermediación (0,40)

Centralización autovector (0,45)

Coeficiente de clusterización (0,489

Medidas de centralidad para los actores encontrados en el Departamento del Meta

Actores	Centralidad de grado	Centraliad autovector	Cetralidad intermediación
ASOMERCADOS CAMPESINOS	0.414	0.144	44.54
CORPOICA	0.379	0.39	17.465
FENALCE	0.31	0.353	9.484
AGRICULTORES TECNIFICADOS	0.276	0.337	7.065
ICA	0.276	0.328	3.153
MONSANTO	0.276	0.293	7.92
UNILLANOS	0.276	0.275	20.866
AGRICULTORES TRADICIONALES	0.241	0.218	17.643
DUPONT PIONNER	0.241	0.275	7.245
SECR DEP DESA AGRI	0.241	0.221	15.438
SECR MUN COMPE DESA	0.207	0.1	15.125
SYNGENTA	0.207	0.218	5.319
CIAT	0.138	0.182	0.908
MINIAGRICULTURA	0.138	0.185	0.32
COSMOPOLITANA	0.103	0.039	1.524
CONSUMIDORES DE MAIZ	0.069	0.026	0.554
GRUPO SEMILLAS	0.069	0.026	0.554
LLANOGRAL S A S	0.069	0.073	0
POLAR	0.069	0.073	0
SENA	0.069	0.035	0
CAMARA DE COMERCIO	0.034	0.021	0
CIMMYT	0.034	0.056	0
DNPU	0.034	0.021	0
DOWN AGROSCIENCE	0.034	0.039	0 48
ECOFONDO	0.034	0.021	0

CONCLUSIONES 49

Conclusiones (1)

El análisis sobre la estructura del sistema muestra que las investigaciones se encuentran influenciadas por los contextos regionales de cada uno de los países líderes en estas investigaciones. Esto hace que los intereses de estos países se vean realizados a través de la generación de conocimiento y el comercio con los países de su ámbito.

Así mismo, los elementos centrales de las palabras clave utilizadas en los artículos relacionan aspectos de la tecnología y de la naturaleza (actores nohumanos), que influyen en las decisiones que toman los actores humanos (instituciones).

Conclusiones (2)

El análisis sobre la dinámica muestra que el sistema tecno-científico se auto organiza debido a que la preferencia está asociada con una pequeña cantidad de instituciones y financiadores que generan la mayor parte de la producción bibliográfica sobre estas variedades. También muestra que el mercado del maíz está determinado por pocos países que tienen una amplia influencia sobre su dinámica, tanto en los precios como en los destinos de la producción.

La estructura muestra la pertinencia de lo local en la selección y el uso de variedades así como las conexiones entre diferentes territorios debidas a que estos comparten semillas, prácticas y usos. Es decir, se genera una red que construye lo que podría denominarse una "sociedad de maíz" producto de los procesos históricos y culturales que se han dado en los diferentes agrosistemas del país.

Conclusiones (3)

La estructura muestra la pertinencia de lo local en la selección y el uso de variedades así como las conexiones entre diferentes territorios debidas a que estos comparten semillas, prácticas y usos. Es decir, se genera una red que construye lo que podría denominarse una "sociedad de maíz" producto de los procesos históricos y culturales que se han dado en los diferentes agrosistemas del país.

Las empresas multinacionales productoras de variedades híbridas y transgénicas de maíz utilizan como estrategia de difusión asumir la posición de intermediarios dentro del sistema de comercialización. Es así como la difusión se da principalmente por los mecanismos que les permiten controlar los mercados mediante el enrolamiento de los agricultores y de distintos actores sociales a escalas local, regional e internacional.

Conclusiones (4)

Las empresas multinacionales productoras de variedades híbridas y transgénicas de maíz utilizan como estrategia de difusión asumir la posición de intermediarios dentro del sistema de comercialización. Es así como la difusión se da principalmente por los mecanismos que les permiten controlar los mercados mediante el enrolamiento de los agricultores y de distintos actores sociales a escalas local, regional e internacional.

La conservación de variedades tradicionales de maíz depende fuertemente de mecanismos de **mercadeo y de comercialización**. Entre las diversas maneras para dar valor de uso a las variedades tradicionales de maíz están los valores culturales y naturales que tienen hoy en día.

